2020 RI H2 Mathematics Prelim Paper 2 Solutions

Section A: Pure Mathematics [40 marks]

Given that $u_1 = \frac{3}{2}$, let the common difference of the arithmetic series be d and the [5]

common ratio of the geometric series be r.

and
$$\frac{3}{2} + \frac{3}{2}r + \frac{3}{2}r^2 = \frac{21}{2}$$
 ----(1)
 $r^2 + r - 6 = 0$

$$r-2$$
 since r is non negative

$$(r+3)(r-2) = 0$$

$$\therefore r = 2, \text{ since r is non negative.}$$

$$\frac{3}{2} + 3d = \frac{3}{2}r^3 - \dots (2)$$

Substitute r = 2 into (2), $d = \frac{7}{2}$.

Sum of first 10 odd numbered terms of AP

$$S = \frac{10}{2} \left[2 \left(\frac{3}{2} \right) + 9(7) \right] = 330$$

 $S_4 = \frac{a(r^4 - 1)}{r - 1}$ ----(1)

$$S_8 = \frac{a(r^8 - 1)}{r - 1} - \dots - (2)$$

$$\frac{(2)}{(1)} \Rightarrow \frac{r^8 - 1}{r^4 - 1} = \frac{17}{16}$$

$$\frac{(r^4-1)(r^4+1)}{r^4-1} = \frac{17}{16}$$

$$r^4 = \frac{1}{16} \Rightarrow r_1 = \frac{1}{2}, r_2 = -\frac{1}{2}$$

When
$$r_1 = \frac{1}{2}$$
, $S_1 = \frac{a}{1 - \frac{1}{2}} = 2a$

When
$$r_2 = -\frac{1}{2}$$
, $S_2 = \frac{b}{1 + \frac{1}{2}} = \frac{2}{3}b$

Ratio is $a: \frac{1}{3}b$ or 3a: b

$$\begin{array}{c|c} \textbf{3(i)} & R_g = (-\infty, 3) \\ \textbf{[4]} & D_f = (0, \infty) \\ \end{array}$$

Since $R_g \not\subset D_f$, fg does not exist.

$$R_f = (1, 4)$$

$$R_{f} = (1, 4)$$

$$D_{g} = (-\infty, 4)$$

Since $R_f \subseteq D_g$, gf exists.

$$R_{gf} = [g(2), g(4)]$$

= [-1, 3)

$$= [-1, 3)$$
(ii) Largest possible value of c is 1.

[4] For
$$x < 1$$
, $|x-1| = 1-x$
 $g(x) = (1-x)(x-3)$
 $(1-x)(x-3) = y$
 $1-(x-2)^2 = y$

$$x = 2 - \sqrt{1 - y}$$
 : $x < 1$
 $g^{-1}(x) = 2 - \sqrt{1 - x}, x \in \mathbb{R}, x < 0.$

[2]
$$y = e^{\tan^{-1}\left(\frac{x}{2}\right)}$$

$$\frac{dy}{dx} = e^{\tan^{-1}\left(\frac{x}{2}\right)} \frac{1}{1 + \left(\frac{x}{2}\right)^2} \times \frac{1}{2}$$

$$= \frac{2e^{\tan^{-1}\left(\frac{x}{2}\right)}}{4 + x^2}$$

$$\left(4 + x^2\right)\frac{dy}{dx} = 2e^{\tan^{-1}\left(\frac{x}{2}\right)}$$

$$\left(4 + x^2\right)\frac{dy}{dx} = 2y \quad \text{(Shown)}$$

(i)
$$(4+x^2)\frac{dy}{dx} = 2y$$
 (1) $(4+x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 2\frac{dy}{dx}$ (2)

When x = 0, y = 1.

From equations (1), (2), (3) we get

$$\frac{dy}{dx} = \frac{1}{2}, \ \frac{d^2y}{dx^2} = \frac{1}{4}, \ \frac{d^3y}{dx^3} = -\frac{1}{8}.$$

By Maclaurin's Theorem,

$$e^{\tan^{-1}\left(\frac{x}{2}\right)} = 1 + \frac{1}{2}x + \frac{1}{4}\left(\frac{x^2}{2!}\right) - \frac{1}{8}\left(\frac{x^3}{3!}\right)$$
$$= 1 + \frac{1}{2}x + \frac{1}{8}x^2 - \frac{1}{48}x^3 + \dots$$

(ii)
$$e^{\tan^{-1}\left(\frac{x}{2}\right)} = 1 + \frac{1}{2}x + \frac{1}{8}x^2 - \frac{1}{48}x^3 + \dots$$

$$\frac{e^{\tan^{-1}\left(\frac{x}{2}\right)}}{\left(1+x\right)^{2}} = \left(1+\frac{1}{2}x+\frac{1}{8}x^{2}-\dots\right)\left(1+x\right)^{-2}$$

$$= \left(1+\frac{1}{2}x+\frac{1}{8}x^{2}-\dots\right)\left(1-2x+3x^{2}-\dots\right)$$

$$= 1+\left(\frac{1}{2}-2\right)x+\left(\frac{1}{8}-1+3\right)x^{2}+\dots$$

$$\frac{e^{\tan^{-1}\left(\frac{x}{2}\right)}}{\left(1+x\right)^{2}} = 1 - \frac{3}{2}x + \frac{17}{8}x^{2} + \dots$$

$$\begin{array}{ll} 5(i) \\ [2] \\ [2] \\ \hline [3] \\ \hline [4] \\ \hline$$

Section B: Probability and Statistics [60 marks]

$$\begin{vmatrix}
6(i) \\ [2] \\ P(X|Y') = \frac{P(X \cap Y')}{P(Y')} \\
P(Y') = \frac{P(X \cap Y')}{P(X|Y')} \\
= \frac{\binom{1}{2}}{\binom{50}{63}} \\
= \frac{63}{100}$$
(ii)
$$P(X) = P(X) + P(Y') - P(X \cap Y') - P(Y') \\
P(X) = P(X \cup Y') + P(X \cap Y') - P(Y') \\
= \frac{3}{4} + \frac{1}{2} - \frac{63}{100} \\
P(X) = \frac{31}{50}$$
(iii)
$$P(X) = P(X \cap Y) + P(X \cap Y') \\
P(X \cap Y) = P(X) - P(X \cap Y') \\
= \frac{31}{50} - \frac{1}{2} \\
= \frac{3}{25}$$
Since $P(X \cap Y) = \frac{3}{25} \neq \frac{31}{50} \times \frac{37}{100} = P(X) \times P(Y)$, X and Y are not independent events
OR
Since $P(X) = \frac{31}{50} \neq \frac{50}{63} = P(X \mid Y')$, X and Y' are not independent events
So X and Y are not independent events

7(i) Let *X* be the mass of a bag of sugar in kg.

[5] The necessary assumption is *X* follows a normal distribution.

 $H_0: \mu = 1$

 $H_1: \mu > 1$

Under H₀, $\overline{X} \sim N\left(1, \frac{0.08^2}{8}\right)$

$$\frac{-}{x} = \frac{8.4}{8} = 1.05$$

 $\overline{x} = \frac{8.4}{8} = 1.05$ Test Statistic: $Z = \frac{\overline{X} - 1}{0.08 / \sqrt{8}}$

Level of significance: 5% Reject H_0 if p-value < 0.05

Using GC, p-value = 0.0385 < 0.05

Since p-value = 0.0385 < 0.05, we reject H_0 and conclude there is sufficient evidence, at the 5% significance level, to support the manufacturer's concern.

(ii) Under H₀, $\overline{X} \sim N \left(1, \frac{\sigma^2}{8} \right)$ [3]

 H_0 not rejected $\Rightarrow p$ -value > 0.05

$$P(\overline{X} > 1.05) > 0.05$$

$$P\left(Z > \frac{1.05 - 1}{\sqrt{\frac{\sigma^2}{8}}}\right) > 0.05$$

$$0.05\sqrt{\frac{8}{\sigma^2}} < 1.64485$$

$$\sigma^2 > 8 \left(\frac{0.05}{1.64485} \right)^2$$

$$\sigma^2 > 0.007392$$

Assumption that *X* follows a normal distribution is required as question did not state the distribution of X and n = 8is too small to use Central Limit Theorem.

8 Let *X* and *Y* be the masses in grams of a randomly chosen apple and a randomly chosen

- (i) potato in grams respectively.
- [3] i.e. $X \sim N(90, 13^2)$, $Y \sim N(170, 30^2)$.

$$E(Y-2X)=170-2(90)=-10$$

$$Var(Y-2X) = 30^2 + 2^2(13^2) = 1576$$

$$Y - 2X \sim N(-10, 1576)$$

Required probability =
$$P(Y > 2X)$$

$$= P(Y - 2X > 0)$$

$$=0.401$$
 (3 s.f.)

(ii) Let
$$T = X_1 + X_2 + ... + X_5 + Y_1 + Y_2 + ... + Y_6$$
.

[3]
$$E(T) = 5(90) + 6(170) = 1470$$

$$Var(T) = 5(13^2) + 6(30^2) = 6245$$

$$T \sim N(1470, 6245)$$

Required probability = P(1200 < T < 1500)

$$= 0.648$$
 (3 s.f.)

(iii) Let
$$W = 0.85(X_1 + X_2 + ... + X_5) + 0.75(Y_1 + Y_2 + ... + Y_6)$$

[3]

$$E(W) = (0.85)(5)(90) + (0.75)(6)(170) = 1147.5$$

$$Var(W) = (0.85^2)(5)(13^2) + (0.75^2)(6)(30^2) = 3648.0125$$

$$W \sim N(1147.5, 3648.0125)$$

Required probability = $P(W \le 1200)$

$$=0.808$$
 (3 s.f.)

9 | P(k < X < 7) = P(X < 7) - P(X < k) = 0.8 - 0.2 = 0.6 (shown) |
| [2] | P(\(mu < X < 7) = 0.3\)

(ii) | Since P(k < X < \mu) = P(\mu < X < 7) = 0.3, |
| by symmetry
$$\mu = \frac{k+7}{2}$$
.

(iii) | P(X < 7) = 0.8 \Rightarrow P(Z < \frac{7 - \mu}{\sqrt{12}}) = 0.8

Therefore $\frac{7 - \mu}{\sqrt{12}} = 0.8416(4 \text{ d.p})$
 $\frac{7 - \mu}{\sqrt{12}} = 0.8416 \Rightarrow \mu = 4.0845$

(iv) | $k = 2\mu - 7 = 1.169$
[3] | P(|X| < k) = 0.135(3 s.f)

(v) | 2P(X < r) = 3P(X > r) |
| 41 | \Rightarrow P(X > r) = 0.4

Let Y be the number of observations out of 10 with values greater than r.

Y \sim B(10, 0.4)

P(Y \ge 6) = 1 - P(Y \le 5) = 0.166(3s.f)

10(i)	number of committees if there is no restrictions in the selection						
[1]	$= {}^{13}C_7 = 1716$						
(i)	There are 3 cases:						
[2]	Case 1: 4 women 3 men						
	Number of committees = ${}^{6}C_{4} \times {}^{7}C_{3} = 525$						
	Case 2: 5 women 2 men						
	Number of committees = ${}^{6}C_{5} \times {}^{7}C_{2} = 126$						
	Case 3: 6 women 1 man						
	Number of committees = ${}^{6}C_{6} \times {}^{7}C_{1} = 7$						
	Total number of committees = 658 (Shown)						
(iii)	P(the committee will consist of 4 single women and 3 single men)						
[1]	$=\frac{{}^{5}C_{4} \times {}^{6}C_{3}}{100} = \frac{100}{100} = \frac{50}{100}$						
	$=\frac{1}{658} = \frac{1}{658} = \frac{1}{329}$						
(iv)	Number of committees with no married member						
[2]	$= {}^{5}C_{4} \times {}^{6}C_{3} + {}^{5}C_{5} \times {}^{6}C_{2}$						
	=100+15						
	=115						

Number of committees with at least one married member

$$=658-115$$

$$= 543$$

P(the committee will contain at least one married member) = $\frac{543}{658}$

Alternative Solution

We consider 3 cases:

Case 1: Husband in, wife out

Number of committees = ${}^{5}C_{4} \times {}^{6}C_{2} + {}^{5}C_{5} \times {}^{6}C_{1} = 75 + 6 = 81$

Case 2: Wife in, husband out

Number of committees = ${}^{5}C_{3} \times {}^{6}C_{3} + {}^{5}C_{4} \times {}^{6}C_{2} + {}^{5}C_{5} \times {}^{6}C_{1} = 200 + 75 + 6 = 281$

Case 3: Both husband and wife are in

Number of committees = ${}^{5}C_{3} \times {}^{6}C_{2} + {}^{5}C_{4} \times {}^{6}C_{1} + {}^{5}C_{5} = 150 + 30 + 1 = 181$

Total number of such committees = 543

P(the committee will contain at least one married member) = $\frac{543}{658}$

- (v) Number of ways to sit 4 women around the table = 3!
- [2] Number of ways to slot the 3 men = $4 \times 3 \times 2 = 24$

Number of sitting arrangements where the all the men are separated $= 3! \times 24$ = 144

Required probability

$$=\frac{144}{6!}$$

$$=\frac{1}{5}$$

- (vi) Number of ways to sit 4 women around the table = 3!
- [3] Number of ways to sit the man next to his wife = 2

Number of ways to sit the other 2 men = ${}^{3}P_{2}$

Number of ways to have all the men separated from each other and the married couple sit next to each other

$$= 3! \times 2 \times 3 \times 2 = 72$$

Required probability

$$=\frac{72}{144}$$

$$=\frac{1}{2}$$

11		2	5	6	0	0	10		
(i) [2]	X	2	5	6	8 9	9	10		
[-]	P(X = x)	$\frac{1}{4}$	$\frac{3}{10}$	$\frac{1}{5}$	100	$\frac{3}{25}$	$\frac{1}{25}$		
		=0.25	=0.3	=0.2	=0.09	=0.12	=0.04		
(ii) [3]	Using GC, E(X) = 5.4								
	$E(X^2) = 35.18$								
	Var $(X) = E(X^2) - [E(X)]^2 = 35.18 - (5.4)^2 = 6.02$ (shown)								
(iii)	Since $n = 50$ is large, by Central Limit Theorem,								
[3]	$\overline{X} \sim N\left(5.4, \frac{6.02}{50}\right)$ approximately.								
	Required probability								
	Required probability $= P(\overline{X} \ge 6) = 0.0419 \text{ (3 s.f.)}$								
(iv)	P(winning	a cash vo	ucher)						
[4]	= P(X > 6)								
	=P(X=8,9 or 10)								
	$= \frac{9}{100} + \frac{3}{25} + \frac{1}{25} = \frac{1}{4}$								

$$\therefore Y \sim \mathbf{B}\left(n, \frac{1}{4}\right)$$

We must have

$$P(Y > 3) > 0.7$$

$$\Rightarrow 1 - P(Y \le 3) > 0.7$$

$$\Rightarrow P(Y \le 3) < 0.3$$

Using GC,

<u> </u>						
n	$P(Y \le 3)$					
18	0.30569					
19	0.26309					

 $\therefore \text{ Least } n = 19$