2019 RVHS H2 Maths Prelim P1 Solutions

1	Solution [5] Inequality
	$\frac{2x}{x+5} < \frac{1}{x-1} \Rightarrow \frac{2x}{x+5} - \frac{1}{x-1} < 0(1)$
	Then, we have $\frac{2x^2 - 2x - x - 5}{(x+5)(x-1)} < 0$
	$\frac{2x^2 - 3x - 5}{(x+5)(x-1)} < 0$
	$\frac{(2x-5)(x+1)}{(x+5)(x-1)} < 0$
	Applying number line test:
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Therefore, the solution to inequality (1) is
	$-5 < x < -1$ or $1 < x < \frac{5}{2}$.
	Next, we replace ' x ' by ' $ x $ ' in inequality (1)
	to obtain $\frac{2 x }{ x +5} - \frac{1}{ x -1} < 0$ (2)
	Thus, the solution to inequality (2) correspondingly is
	$-5 < x < -1$ or $1 < x < \frac{5}{2}$
	i.e. $-5 < x < -1$ (NA) or $1 < x < \frac{5}{2}$
	Thus, the solution to inequality (2) is
	$-\frac{5}{2} < x < -1$ or $1 < x < \frac{5}{2}$.

2	Solution [8] Maclaurin's Series
	(i)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos x}{2y}$
	·
	$2y\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x$
	Diff Implicitly w.r.t x,
	$2y\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}y}{\mathrm{d}x} = -\sin x$
	$2y\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 2\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = -\sin x$
	When $x = 0$, $y = 2$ (GIVEN)
	Hence $\frac{dy}{dx} = \frac{1}{4}$
	$(2)(2)\frac{d^2y}{dx^2} + 2\left(\frac{1}{4}\right)^2 = 0$
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{1}{32}$
	Using the Maclaurin's formula,
	$y = 2 + x(\frac{1}{4}) + \frac{x^2}{2!}(-\frac{1}{32}) + \dots$
	$\approx 2 + \frac{x}{4} - \frac{x^2}{64} $ (up to the x^2 term)
	Equation of tangent at $x = 0$:
	$y = 2 + \frac{1}{4}x$
	(ii)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos x}{x}$
	$\frac{dx}{dx} = \frac{2y}{x}$
	$\int 2y \mathrm{d}y = \int \cos x \mathrm{d}x$
	$y^2 = \sin x + C$
	Subst $(0, 2)$, then $C = 4$
	$y = \pm \sqrt{4 + \sin x}$
	Since $x = 0$ and $y = 2$,
	$\therefore y = \sqrt{4 + \sin x}$

(iii)

$$y = \sqrt{4 + \sin x}$$

 $= (4 + \sin x)^{\frac{1}{2}}$
 $\approx (4 + x)^{\frac{1}{2}}$ (since x is small)
 $= 2\left(1 + \frac{x}{4}\right)^{\frac{1}{2}}$
 $= 2\left(1 + \frac{1}{2} \cdot \frac{x}{4} + \frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(\frac{x}{4}\right)^2}{2!} + \dots\right)$
 $\approx 2 + \frac{x}{4} - \frac{x^2}{64}$

3	Solution [8] Curve Sketching	
5	(i)	
	Since $x = 3$ is an asymptote,	
	$2(3)^2 - b = 0$	
	b = 18	
	C passes through $\left(\frac{9}{2},0\right)$ implies	
	` '	
	$2\left(\frac{9}{2}\right) - a = 0$	
	a = 9	
	(ii)	
	8	
	!\	
	$y = \frac{2x-9}{2x^{2} \cdot 8}$	
	$\xrightarrow{c} \xrightarrow{B} \xrightarrow{x}$	
	X=3	
	A(1.15, 0.436)	
	B(7.85, 0.0637)	
	C(4.50, 0.00)	
	dy a	
	TO find stationary points, set $\frac{dy}{dx} = 0$	
	And work through the maths to do it. There should be 2	
	stationary points. This is actually the most important part.	
	The rest is the axes intercepts (let $x=0$ and then let $y=0$),	
	identify the asymptotes. And the shape is important –	
	especially the part on moving as close to the asymptote as	
	possible.	

 $\frac{\left(x-8\right)^2}{h^2} + \frac{y^2}{10^2} = 1$ is the ellipse with centre at (8,0), with axes of length h and 10.

Horizontal width need to be at least 8+4=12 units.

Therefore $h \ge 12$, for 6 distinct points of intersections.

4	Solution [10] Functions
	(i)
	Let $y = \frac{ax+b}{cx-a}, x \in \mathbb{R}, x \neq \frac{a}{c}$
	y(cx-a) = ax + b
	x(cy-a) = ay + b
	$x = \frac{ay + b}{cy - a}$
	Replacing y by x,
	$\therefore f^{-1}(x) = \frac{ax+b}{cx-a}, x \in \mathbb{R}, x \neq \frac{a}{c}$
	Since $f(x) = f^{-1}(x) = \frac{ax+b}{cx-a}$, f is self-inverse. (SHOWN)
	(ii)
	$f(x) = f^{-1}(x)$
	Composing function f on both sides,
	$\mathrm{ff}(x) = \mathrm{ff}^{-1}(x)$
	$f^2(x) = x$
	$\mathbf{D}_{\mathbf{f}^2} = \mathbb{R} \setminus \left\{ \frac{a}{c} \right\}, \mathbf{R}_{\mathbf{f}^2} = \mathbb{R} \setminus \left\{ \frac{a}{c} \right\}$
	or present as $R_{f^2} = \left(-\infty, \frac{a}{c}\right) \cup \left(\frac{a}{c}, \infty\right)$
	(iii)
	$f^{-1}(x) = x$
	$\frac{ax+b}{cx-a} = x$
	$ax + b = cx^2 - ax$
	$cx^2 - 2ax - b = 0$
	$x^2 - \frac{2a}{c}x - \frac{b}{c} = 0$
	$\left(x - \frac{a}{c}\right)^2 = \frac{b}{c} + \left(\frac{a}{c}\right)^2$

$x - \frac{a}{c} = \pm \sqrt{\frac{bc + a^2}{c^2}}$ $x = \frac{a}{c} + \sqrt{\frac{bc + a^2}{c^2}} \text{ or } \frac{a}{c} - \sqrt{\frac{bc + a^2}{c^2}}$ $= \frac{a + \sqrt{bc + a^2}}{c} \text{ or } \frac{a - \sqrt{bc + a^2}}{c}$
(iv) Now, $a = 2$, $b = 5$ and $c = 3$ $f(x) = \frac{2x+5}{3x-2}, x \in \mathbb{R}, x \neq \frac{2}{3}$ $g(x) = e^{x} + 2, x \in \mathbb{R}$ FACT: For fg to exist, need $R_g \subseteq D_f$ to hold, $R_g = (2, \infty) \subseteq \mathbb{R} \setminus \left\{\frac{2}{3}\right\} = D_f$ fg does exist.
(v) $D_g = \mathbb{R} \overset{g}{\mapsto} R_g = (2, \infty) \overset{f}{\mapsto} R_{fg} = \left(\frac{2}{3}, \frac{9}{4}\right)$ Therefore Range of fg is $\left(\frac{2}{3}, \frac{9}{4}\right)$

5	Solution [7] MOD
	(i)
	$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
	$=\frac{e^{x}(1-e^{-2x})}{e^{x}(1+e^{-2x})}$
	$=\frac{1-e^{-2x}}{1+e^{-2x}}$
	(ii)
	$f(n+1) - f(n) = \left[\sinh x\right] \left[\operatorname{sech}\left(n + \frac{1}{2}\right)x\right] \left[\operatorname{sech}\left(n - \frac{1}{2}\right)x\right]$
	$\sum_{n=1}^{N} f(n+1) - f(n) = (\sinh x) \sum_{n=1}^{N} \left[\operatorname{sech}\left(n + \frac{1}{2}\right) x \right] \left[\operatorname{sech}\left(n - \frac{1}{2}\right) x \right]$
	$\sum_{n=1}^{N} [\operatorname{sech}\left(n + \frac{1}{2}\right) x] [\operatorname{sech}\left(n - \frac{1}{2}\right) x] = \frac{1}{\sinh x} \sum_{n=1}^{N} f(n+1) - f(n)$
	$S_n = \frac{1}{\sinh x} \sum_{n=1}^{N} f(n+1) - f(n)$
	$= \frac{1}{\sinh x} \begin{bmatrix} f(2) & - & f(1) \\ f(3) & - & f(2) \\ f(4) & - & f(3) \\ & \dots \\ f(N) & - & f(N-1) \\ f(N+1) & - & f(N) \end{bmatrix}$
	$=\frac{1}{\sinh x} \Big(f(N+1) - f(1) \Big)$
	$= \left(\operatorname{cosech} x\right) \left(\tanh\left(N + \frac{1}{2}\right)x - \tanh\left(\frac{1}{2}\right)x\right)$
	$\therefore A = N + \frac{1}{2}$
	(iii) S_{∞}
	$= \lim_{N \to \infty} \sum_{n=1}^{N} \left[\operatorname{sech}\left(n + \frac{1}{2}x\right) \right] \left[\operatorname{sech}\left(n - \frac{1}{2}x\right) \right]$
	$= \lim_{N \to \infty} \left(\operatorname{cosech} x \right) \left[\tanh \left(N + \frac{1}{2} \right) x - \tanh \left(\frac{1}{2} \right) x \right]$

$$\lim_{N \to \infty} \tanh\left(N + \frac{1}{2}\right) x$$

$$= \lim_{N \to \infty} \frac{1 - e^{-2\left(N + \frac{1}{2}\right)x}}{1 + e^{-2\left(N + \frac{1}{2}\right)x}}$$

$$= 1$$

Since
$$\tanh\left(N+\frac{1}{2}\right)x\to 1$$
 as $N\to\infty$, therefore S_∞ exists.

$$S_{\infty} = \left(\operatorname{cosech} x\right) \left[1 - \tanh\left(\frac{1}{2}\right)x\right]$$

$$P = 1, \ Q = \frac{1}{2}$$

$$P=1, Q=\frac{1}{2}$$

6	Solution [11] Complex Numbers
	(a)
	$(1+i)z^2 - z + (2-2i) = 0$
	$1\pm\sqrt{1-4(1+i)(2-2i)}$
	$z = \frac{1 \pm \sqrt{1 - 4(1 + i)(2 - 2i)}}{2 + 2i}$
	$=\frac{1\pm\sqrt{1-8(1+i)(1-i)}}{2+2i}$
	$=\frac{1\pm\sqrt{1-8(2)}}{2+2i}$
	$=\frac{1\pm\sqrt{15}i}{2+2i}(*)$
	$= \frac{1 + \sqrt{15}i}{2 + 2i} \qquad or \frac{1 - \sqrt{15}i}{2 + 2i}$
	$={2+2i}$ or ${2+2i}$
	$(1+\sqrt{15}i)(2-2i)$ $(1-\sqrt{15}i)(2-2i)$
	$= \frac{(1+\sqrt{15i})(2-2i)}{(2+2i)(2-2i)} or \frac{(1-\sqrt{15i})(2-2i)}{(2+2i)(2-2i)}$
	$= \frac{(1+\sqrt{15})+i(-1+\sqrt{15})}{4} \qquad or \frac{(1-\sqrt{15})+i(-1-\sqrt{15})}{4}$
	4 4
	(ii)
	$z^{4}-2z^{3}+z^{2}+az+b=0 (*)$ Sub $z=1+2i$ into $(*)$,
	$(1+2i)^4 - 2(1+2i)^3 + (1+2i)^2 + a(1+2i) + b = 0$
	(-7-24i)-2(-11-2i)+(-3+4i)+a(1+2i)+b=0
	(12+a+b)+(2a-16)i=0
	Comparing the real and imaginary coefficients:
	2a-16 = 0 (1)
	12 + a + b = 0 (2)
	Solving (1) & (2):
	a=8, b=-20
	Therefore
	$z^4 - 2z^3 + z^2 + 8z - 20 = 0$
	Using GC:
	z = 1 + 2i, 1 - 2i, 2, -2
	(ii) Alternative Method
	$f(z) = z^4 - 2z^3 + z^2 + 8z - 20$
	Since $1 + 2i$ is a root of $f(z)=0$, and the polynomial have all

real coefficients, this imply 1 - 2i is also a root. Hence $z^4 - 2z^3 + z^2 + az + b = (z - (1+2i))(z - (1-2i))(z^2 + pz + q)$ $=((z-1)-2i)((z-1)+2i)(z^2+pz+q)$ $=((z-1)^2+4)(z^2+pz+q)$ $=(z^2-2z+5)(z^2+pz+q)$ Equating coeff of z^3 in f(z): -2 = p - 2. Hence p = 0Equating coeff of z^2 in f(z): 1 = q - 2p + 5. Hence q = -4Now $z^4 - 2z^3 + z^2 + az + b = (z^2 - 2z + 5)(z^2 - 4)$ Equating coeff of z in f(z): a = 8Equating constant in f(z): b = -20**Hence** a = 8 and b = -20f(z) = 0 $(z^2-2z+5)(z^2-4)=0$ Hence the other 2 roots are ± 2 $z^4 - 2z^3 + z^2 + az + b = 0$ ----(1) Let z = -iw $w^4 - 2iw^3 - w^2 - 8iw - 20 = 0$ ----(2) Therefore $w = \frac{1}{-i}z \Rightarrow w = iz$ w = i(1+2i), i(1-2i), i(2), i(-2)w = i - 2, i + 2, 2i, -2i

Question 7 [10] Integration

(i) When the left height of a rectangle is used, area of region

$$= \frac{\pi}{10} \left(0 + \sin^6 \frac{\pi}{10} + \sin^6 \frac{2\pi}{10} + \sin^6 \frac{3\pi}{10} + \sin^6 \frac{4\pi}{10} \right)$$
$$= \frac{\pi}{10} (1.0625) = 0.10625\pi$$

When the right height of a rectangle is used, area of region

$$= \frac{\pi}{10} \left(\sin^6 \frac{\pi}{10} + \sin^6 \frac{2\pi}{10} + \sin^6 \frac{3\pi}{10} + \sin^6 \frac{4\pi}{10} + \sin^6 \frac{5\pi}{10} \right)$$
$$= \frac{\pi}{10} (2.0625) = 0.20625\pi$$

Thus, $0.10625\pi < A < 0.20625\pi$.

(ii)
$$I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \, dx$$

$$= \int_{0}^{\frac{\pi}{2}} \sin x \sin^{2n-1} x \, dx$$

$$= \left[-\cos x \sin^{2n-1} x \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x (2n-1) \sin^{2n-2} x \cos x \, dx$$

$$= (2n-1) \int_{0}^{\frac{\pi}{2}} \cos^{2} x \sin^{2n-2} x \, dx$$

$$= (2n-1) \int_{0}^{\frac{\pi}{2}} (1-\sin^{2} x) \sin^{2n-2} x \, dx$$

$$= (2n-1) \int_{0}^{\frac{\pi}{2}} \sin^{2n-2} x - \sin^{2n} x \, dx$$

$$= (2n-1) (I_{n-1} - I_{n})$$

$$\Rightarrow I_{n} + (2n-1) I_{n} = (2n-1) I_{n-1}$$

$$\Rightarrow I_{n} = \frac{2n-1}{2n} I_{n-1}$$

I_2	
$=\frac{3}{4}I_{1}$	
$= \left(\frac{3}{4}\right) \left(\frac{1}{2}\right) I_0$	
$= \left(\frac{3}{4}\right) \left(\frac{1}{2}\right) \int_0^{\frac{\pi}{2}} 1 \mathrm{d}x,$	
$= \left(\frac{3}{4}\right) \left(\frac{1}{2}\right) \left(\frac{\pi}{2}\right)$	
$=\frac{3}{16}\pi \text{(Shown)}$	
Area of region	
I_3	
$=\frac{5}{6}I_2$	
$= \left(\frac{5}{6}\right) \left(\frac{3}{16}\pi\right)$	
$=\frac{5}{32}\pi$	

8	Solution [13] Vectors
	(i) $p_1: \mathbf{r} \bullet \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix} = 4$, $p_2: \mathbf{r} \bullet \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 4$ Since the two normal vectors are not parallel to each other, the 2 planes are not parallel and hence intersecting.
	From GC, $x = 4 - \frac{3}{2}\lambda$ (1) $y = -\frac{1}{2}\lambda$ (2)
	$z = \lambda \qquad(3)$ Hence $\ell : \mathbf{r} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$ where $\lambda \in \mathbb{R}$
	$\frac{x-4}{3} = y = -\frac{z}{2}$
	(ii) $p_{3} \text{ contains } \ell : \mathbf{r} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} \text{ and point } Q(5, 3, -6).$
	Let T denote the point $(4,0,0)$.
	$\overrightarrow{QT} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 3 \\ -6 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \\ 6 \end{pmatrix} \text{ and } \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} \text{ are 2 direction vectors}$ parallel to p_3 .
	Consider $\begin{pmatrix} -1 \\ -3 \\ 6 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 16 \\ 8 \end{pmatrix} = 8 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$
	Therefore $\mathbf{n} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ is a normal vector to p_3 .

$$\mathbf{r} \cdot \mathbf{n} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = 0$$

$$p_3: \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = 0$$

$$p_3: 2y+z=0$$

Geometrical Relationship:

3 planes/intersect at the common line l.

(iii)

$$p_2: \mathbf{r} \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 4 \quad --- \quad (1)$$

Let N be the foot of perpendicular of S(0,2,0) on p_2 .

Let l_{NS} be the line passing through points N and S.

$$l_{NS}: \mathbf{r} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \ \lambda \in \mathbb{R} \quad ---- \quad (2)$$

Sub (2) into (1):

$$\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = 4 \quad ---- \quad (*)$$

$$-2 + 3\lambda = 4$$
$$\lambda = 2$$

$$\lambda = 2$$

$$\overrightarrow{ON} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} - \dots (2)$$

Let S' be the point of reflection of S in p_2 .

N is the midpoint of SS'.

$$\overrightarrow{ON} = \frac{1}{2} \left(\overrightarrow{OS} + \overrightarrow{OS'} \right)$$

$$\overrightarrow{OS'} = 2\overrightarrow{ON} - \overrightarrow{OS}$$

$$\overrightarrow{OS'} = 2 \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix}$$

Let m' be the line of reflection of m in p_2 .

The point T(4,0,0) lying on m also lies on p_2 .

Therefore T(4,0,0) also lies on m'.

m' passes through T(4,0,0) and S'(4,-2,4)

$$m': \mathbf{r} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{bmatrix} 4 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 4 \\ -2 \\ 4 \end{bmatrix}, \ \lambda \in \mathbb{R}$$

$$m': \mathbf{r} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix}, \ \lambda \in \mathbb{R}$$

$$m': \mathbf{r} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \ \lambda \in \mathbb{R}$$

9	Solution [13]	I A DCD		
,	Solution [13] APGP (i)			
	We first observe the following pattern:			
	Month	Beginning (\$)	End (\$)	
	Jan' 2019	5000	5000×1.01	
	Feb'2019	5000×1.01–100	(5000×1.01–100)×1.01	
	Mar'2019	5000×1.01 ² –100	$(5000\times1.01^2-100\times1.01)$	
		×1.01–100	$-100)\times1.01$	
	•	end of March 2019, 3-100×1.01 ² -100×1	John's account is left with 1.01)	
	(ii) From (i) we	can deduce that b	y the end of the n^{th} month,	
		ft in John's saving a		
	=	=	$0 \times 1.01^{n-2} + \dots + 100 \times 1.01$	
	$=5000 \times 1.01$	$n^{n} - 100 \times 1.01 (1 + 1.00)$	$01+1.01^2++1.01^{n-2}$	
	= 5000×1.01	$\frac{1}{1.0}$ -100×1.01× $\frac{1(1.0)}{1.0}$	$\frac{10^{1^{n-1}}-1}{01-1}$	
	$=5000\times1.01$	$n^{n} - 10000 \times 1.01 \times (1.01)$	$01^{n-1}-1\big)$	
	$=10100+5000\times1.01^{n}-10000\times1.01^{n}$			
	=100(101-5)	50×1.01^n (shown)		
	(iii)	0 (101 70 1018)		
	Consider 10	$0(101-50\times1.01^n)\leq$	≦0	
	\Rightarrow 50×1.01 ⁿ	≥101		
	$\Rightarrow 1.01^n \ge \frac{10}{5}$	01		
	$\Rightarrow n \ge 70.66$			
	Thus, it will take Mr Tan 71 months to deplete his saving account and it will be by November of 2024.			
	Alternative solution using table:			
	n Amt left in account			
	70	66.18 > 0		
	71	-34.16 < 0		
	Account depleted in the 71 st month.			

(iv)

The amount of interest earned by Mrs Tan's for each subsequent month forms an AP: 10, 10+5, $10+2\times5$,..... i.e. an AP with first term 10 and common difference 5 Thus, by the end of n^{th} month, the total amount of money in Mrs Tan's saving account

$$= 3000 + 50n + \frac{n}{2} [2(10) + 5(n-1)]$$

$$= 3000 + 50n + 10n + 2.5n(n-1)$$

$$= 3000 + 57.5n + 2.5n^{2}$$

For Mrs Tan's account to be more than Mr Tan's, we let $3000 + 57.5n + 2.5n^2 > 100(101 - 50 \times 1.01^n)$ ---- (*)

Then using GC: we have

n	LHS of (*)	RHS of (*)
14	4295	4352.6
15	4425	4295.2
16	4560	4327.1

It takes 15 months from Jan 2019 for Mrs' Tan's account to exceed that of Mr Tan.

Thus, it is by end of March 2020 that Mrs Tan's account will first be more than that of Mr Tan's.

10	Solution [13] DE
	(i)
	Based on the given information, we have
	$\frac{\mathrm{d}N}{\mathrm{d}t} = 2 - kN, k \in R$
	Since it is given that $\frac{dN}{dt} = 1.5$ when $N = 3$,
	we have $1.5 = 2 - 3k \implies k = \frac{1}{6}$.
	Thus, $\frac{dN}{dt} = 2 - \frac{1}{6}N \Rightarrow 6\frac{dN}{dt} = 12 - N \text{ (shown)}$
	(ii)
	Now, $6\frac{dN}{dt} = 12 - N$
	$\Rightarrow \int \frac{\mathrm{d}N}{12 - N} = \int \frac{1}{6} \mathrm{d}t$
	$\Rightarrow \frac{\ln\left 12 - N\right }{-1} = \frac{1}{6}t + c$
	$\Rightarrow \ln\left 12 - N\right = -\frac{1}{6}t + C$
	Then, we have
	$ 12 - N = e^{-\frac{1}{6}t + C}$
	$\Rightarrow 12 - N = \pm e^{-\frac{1}{6}t + C}$
	$\Rightarrow 12 - N = Ae^{-\frac{1}{6}t} \text{ where } A = \pm e^C$
	Next, given that when $t = 0$, $N = 1$, we have $A = 12 - 1 = 11$.
	Hence, the required equation connecting N and t is
	$N = 12 - 11e^{-\frac{1}{6}t}$
	(iii)
	Let $12 - 11e^{-\frac{1}{6}t} \ge 6$

