EJC H2 2019 JC2 Prelim P1 Solutions

Let x, y, z be the tariff in ϕ /kWh in Jan-Apr, May-Aug and Sept-Dec respectively.

$$677x + 586y + 699z = 52953$$
 --- (1)
 $1011x + 871y + 1048z = 79063$ --- (2)
 $1349x + 1174y + 1417z = 106328$ --- (3)

$$1011x + 871y + 1048z = 79063 \qquad --- (2)$$

$$1349x + 1174y + 1417z = 106328$$
 --- (3)

Solving with GC,

$$x = 25.81$$

$$y = 29.68$$

$$z = 25.88$$

Total length is *l*, thus we have $4s + 2\pi r = l$...(*)

Let the combined area be A.

$$A = s^2 + \pi r^2 \dots (\#)$$

Method 1: implicit differentiation of (#)

Use (#) to find
$$\frac{dA}{ds}$$
: $A = s^2 + \pi r^2 \Rightarrow \frac{dA}{ds} = 2s + 2\pi r \frac{dr}{ds}$

Use (*) to find
$$\frac{dr}{ds}$$
: $4s + 2\pi r = l \Rightarrow 4 + 2\pi \frac{dr}{ds} = 0$

Thus
$$\frac{dr}{ds} = -\frac{2}{\pi}$$

Sub into
$$\frac{dA}{ds}$$
: $\frac{dA}{ds} = 2s + 2\pi r \left(-\frac{2}{\pi}\right) = 2s - 4r$

For stationary value of A, $\frac{dA}{ds} = 0 \Rightarrow s = 2r$

Check minimum:
$$\frac{d^2 A}{ds^2} = 2 - 4 \frac{dr}{ds} = 2 - 4 \left(-\frac{2}{\pi} \right) > 0$$

Thus *A* is a minimum when s = 2r.

Required ratio is

$$\frac{\text{length of first piece}}{\text{length of second piece}} = \frac{4s}{2\pi r} = \frac{4(2r)}{2\pi r} = \frac{4}{\pi}$$

Method 2: differentiation in 1 variable

Method 2: differentiation in 1 variable

2a: expressing A in terms of r

From (*),
$$s = \frac{l - 2\pi r}{4 + 2\pi r}$$

Islandwide Privery What 2app Only 88660031

Sub into (#):
$$A = \pi r^2 + \left(\frac{1 \text{ What 2app Only 88660031}}{4}\right)$$

$$\frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r + 2\left(\frac{l - 2\pi r}{4}\right)\left(\frac{-2\pi}{4}\right)$$
$$= \frac{\pi}{4}\left[8r - (l - 2\pi r)\right] = \frac{\pi}{4}\left[r(8 + 2\pi) - l\right]$$

For stationary value of A, $\frac{dA}{dr} = 0$:

$$\frac{\pi}{4} \left[r \left(8 + 2\pi \right) - l \right] = 0 \Rightarrow r = \frac{l}{8 + 2\pi}$$

Check minimum:

EITHER 2nd Derivative Test

$$\frac{\mathrm{d}^2 A}{\mathrm{d}r^2} = \frac{\pi}{4} \left(8 + 2\pi \right) > 0$$

So $r = \frac{l}{8 + 2\pi}$ gives a minimum value of A.

OR 1st Derivative Test

$$\frac{\mathrm{d}A}{\mathrm{d}r} = \frac{\pi}{4} \left[r(8+2\pi) - l \right] = \frac{\pi}{4} \left(8 + 2\pi \right) \left(r - \frac{l}{8+2\pi} \right)$$

r	$\left(\frac{l}{8+2\pi}\right)^{-}$	$\left(\frac{l}{8+2\pi}\right)$	$\left(\frac{l}{8+2\pi}\right)^{+}$
$r - \frac{l}{8 + 2\pi}$	-ve	0	+ve
$\frac{\mathrm{d}A}{\mathrm{d}r}$	-ve	0	+ve

$$\frac{\text{length of first piece}}{\text{length of second piece}} = \frac{4s}{2\pi r} = \frac{l - 2\pi r}{2\pi r} = \frac{l}{2\pi r} - 1$$

When A is minimum,

When A is infinitum,
$$\frac{\text{length of first piece}}{\text{length of second piece}} = \frac{l}{2\pi \left(\frac{l}{8+2\pi}\right)} - 1$$

$$= \frac{\left(8+2\pi\right)}{2\pi} - 1$$

$$= \frac{4}{\pi}$$

2b: expressing A in terms of s

From (*),
$$r = \frac{l-4s}{2\pi}$$
Sub into (#): $A = \pi_{\text{sindwide Delivery}}$ whatsapp Only 88660031
$$\frac{dA}{dS} = 2\pi \left(\frac{l-4s}{2\pi}\right) \left(\frac{-4}{2\pi}\right) + 2s$$

$$= \frac{2}{\pi} \left[s(4+\pi) - l\right]$$

For stationary value of A, $\frac{dA}{ds} = 0$:

$$\frac{2}{\pi} \left[s \left(4 + \pi \right) - l \right] = 0 \Longrightarrow s = \frac{l}{4 + \pi}$$

Check minimum:

EITHER 2nd Derivative Test

$$\frac{\mathrm{d}^2 A}{\mathrm{d}s^2} = \frac{2}{\pi} \left(4 + \pi \right) > 0$$

So $s = \frac{l}{4+\pi}$ gives a minimum value of A

OR 1st Derivative Test

$$\frac{\mathrm{d}A}{\mathrm{d}S} = \frac{2}{\pi} \left[s \left(4 + \pi \right) - l \right] = \frac{2 \left(4 + \pi \right)}{\pi} \left(s - \frac{l}{4 + \pi} \right)$$

S	$\left(\frac{l}{4+\pi}\right)^{-}$	$\left(\frac{l}{4+\pi}\right)$	$\left(\frac{l}{4+\pi}\right)^{+}$
$s - \frac{l}{4 + \pi}$	-ve	0	+ve
$\frac{\mathrm{d}A}{\mathrm{d}s}$	-ve	0	+ve

$$\frac{\text{length of first piece}}{\text{length of second piece}} = \frac{4s}{2\pi r} = \frac{4s}{2\pi \left(\frac{l-4s}{2\pi}\right)} = \frac{4s}{l-4s}$$

When *A* is minimum,

length of first piece length of second piece
$$= \frac{4\left(\frac{l}{4+\pi}\right)}{l - \frac{4l}{4+\pi}}$$
$$= \frac{4l}{4+\pi} \times \frac{4+\pi}{\pi l}$$
$$= \frac{4}{\pi}$$

Other possible methods:

Method 3: Differentiate w.r.t. ratio

Method 4: Complete the square

$$\frac{2}{2} \left[2a + (2-1)d \right] = \frac{a(r^2 - 1)}{r - 1}$$

$$\Rightarrow 2a + d = a(r+1) - - - - - (1)$$

$$\frac{4}{2} \left[2a + (4-1)d \right] = \frac{a(r^4 - 1)}{r - 1}$$

$$\Rightarrow 4a + 6d = a(r^2 + 1)(r + 1) - - - - - (2)$$

From (1): Sub
$$d = a(r+1) - 2a$$
 into (2)

i.e.
$$d = ar - a$$

$$4a + 6[ar - a] = a(r^2 + 1)(r + 1)$$

$$6ar - 2a = a(r^3 + r^2 + r + 1)$$

$$r^3 + r^2 - 5r + 3 = 0$$
 (shown)

$$(r-1)^2(r+3)=0$$

$$r = -3 \text{ or } r = 1 \text{ (rej)}$$

[If
$$r = 1$$
, $d = a(r+1) - 2a = 0$, but $d \ne 0$]

Alternative solution

$$2a + d = \frac{a(r^2 - 1)}{r - 1} - (1)$$

$$4a + 6d = \frac{a(r^4 - 1)}{r - 1} - (2)$$

$$8a = \frac{6a(r^2 - 1)}{r - 1} - \frac{a(r^4 - 1)}{r - 1}$$

$$8a(r-1) = a(6r^2 - 6 - r^4 + 1)$$

$$8r - 8 = 6r^2 - r^4 - 5$$

$$r^4 - 6r^2 + 8r - 3 = 0$$

Solving:

$$r = -3$$
 or 1 (rej)

(ii)

$$a(-3)^{n-1} > 1000[a+(n-1)d]$$

Note: d = a(-3+1) - 2a = -4a

$$a(-3)^{n-1} > 1000[a+(n-1)(-4a)]$$

$$a(-3)^{n-1} > 1000a(5-4n)$$

Since a < 0,

$$(-3)^{n-1} < 1000(5-4n)$$

Since n^{th} term of GP is positive, i.e. $a(-3)^{n-1} > 0$

 $(-3)^{n-1}$ is negative $\Rightarrow n$ is even

From GC (table)

n	$(-3)^{n-1}$	1000(5-4n)
10	-19683 >	-35000
12	-177147 <	-43000

Smallest n = 12

$(1+ax)^{n} = 1 + n(ax) + \frac{n(n-1)}{2!}(ax)^{2} + \frac{n(n-1)(n-2)}{3!}(ax)^{3} + \dots$ (ii) Since the three coefficients form a GP, we have $\frac{n(n-1)}{2}a^{2} = \frac{n(n-1)(n-2)}{6}a^{3}$ $\frac{n(n-1)a}{2} = \frac{n(n-1)a}{2}a^{2}$ $\frac{(n-1)a}{2} = \frac{(n-2)a}{3}$ $3(n-1) = 2(n-2)$ $n = -1$
Since the three coefficients form a GP, we have $ \frac{n(n-1)}{2}a^2 = \frac{n(n-1)(n-2)}{6}a^3 $ $ \frac{n(n-1)a}{2}a^2 = \frac{n(n-1)a}{2}a^2 $ $ \frac{(n-1)a}{2} = \frac{(n-2)a}{3} $ $ 3(n-1) = 2(n-2) $
$\frac{\frac{n(n-1)}{2}a^2}{na} = \frac{\frac{n(n-1)(n-2)}{6}a^3}{\frac{n(n-1)}{2}a^2}$ $\frac{(n-1)a}{2} = \frac{(n-2)a}{3}$ $3(n-1) = 2(n-2)$
$\frac{(n-1)a}{2} = \frac{(n-2)a}{3}$ $3(n-1) = 2(n-2)$
3(n-1)=2(n-2)
n=1
(iii)
To prove GP, we need to show that $\frac{u_r}{u_{r-1}} = \text{constant}$
$u_r = \frac{n(n-1)(n-r+1)}{r!}a^r = \frac{(-1)(-2)(-1-r+1)}{r!}a^r$
$u_{r-1} = \frac{n(n-1)(n-r+2)}{(r-1)!}a^{r-1} = \frac{(-1)(-2)(-1-r+2)}{(r-1)!}a^{r-1}$
$\frac{u_r}{u_{r-1}} = \frac{\left(-1 - r + 1\right)}{r}a$
Since $n = -1$, $\frac{u_r}{u_{r-1}} = \frac{(-1 - r + 1)}{r} a = -a$ (constant)
Alternatively,
$(1+ax)^{-1} = 1 - ax + a^2x^2 - a^3x^3 + \dots + (-a)^{r-1} + \dots$
$\frac{u_r}{u_{r-1}} = \frac{(-a)^{r-1}}{(-a)^{r-2}} = \frac{(-1)^{r-1}(a)^{r-1}}{(-1)^{r-2}(a)^{r-2}} = -a \text{ (constant)}$
(iv)
The cofficients of the terms in x of odd powers form a GP with first term $-a$, and common ratio a^2 .
Sum to infinity $=\frac{-a}{1-a^2} = \frac{a}{a^2-1}$

Since the graph of y = f(|x|) retains the part with positive x-values, $f(|-x_2|) = f(x_2) = a$. Similarly for $-x_3$. Thus there will be 4 roots, i.e. $x_2, x_3, -x_2, -x_3$

(b)

 $\frac{2\ln 2}{3\pi}x \le \left|\ln\left(1-\sin x\right)\right|$

From the graph,

$$\frac{2\ln 2}{3\pi} x \le \left| \ln(1 - \sin x) \right|$$

$$0 \le x < \frac{\pi}{2} \text{ or } \frac{\pi}{2} < x \le 2.80 \text{ or } 4.13 \le x \le \frac{3\pi}{2}$$

OR $0 \le x < 1.57$ or $1.57 < x \le 2.80$ or $4.13 \le x \le 4.71$ (3 s.f)

6 (i)
$$y = \frac{x^2 + 5x + 3}{x + 1} = x + 4 - \frac{1}{x + 1}$$

$$\frac{dy}{dx} = 1 + (x + 1)^{-2} = 1 + \frac{1}{(x + 1)^2} \text{ or}$$

$$\frac{dy}{dx} = \frac{(x + 1)(2x + 5) - (x^2 + 5x + 3)(1)}{(x + 1)^2}$$

$$= \frac{x^2 + 2x + 2}{(x + 1)^2} = \frac{1 + (x + 1)^2}{(x + 1)^2} = 1 + \frac{1}{(x + 1)^2}$$
Since $(x + 1)^2 \ge 0$, $\frac{1}{(x + 1)^2} > 0$, then $\frac{dy}{dx} = 1 + \frac{1}{(x + 1)^2} > 1$.

Since $\frac{dy}{dx} \neq 0$ for any real value of x, C has no stationary points.

Required volume =
$$\pi (4.5)^2 (1) - \pi \int_0^1 \left(\frac{x^2 + 5x + 3}{x + 1} \right)^2 dx$$

= 17.516
= 17.5 units³ (3 s.f.) (by G.C.)

NORMAL FLOAT AUTO REAL RADIAN MP
$$\pi \left(4.5^2 - \int_{0}^{1} \left(\frac{x^2 + 5x + 3}{x + 1}^2 \right) dX \right)$$

$$17.51610613$$

 $z = \sqrt{6}e^{i\left(\frac{\pi}{4}\right)}$ $\Rightarrow z^2 = 6e^{i\left(\frac{\pi}{2}\right)}$ 6 $R_1(0,6)$

(ii)

Area of triangle $OP_1P_2 = \frac{1}{2}(6)\sqrt{3} = 3\sqrt{3}$

$$\arg(w^n z^3) = \arg(w^n) + \arg(z^3)$$

$$= n \arg w + 3 \arg z$$

$$= n\left(-\frac{\pi}{3}\right) + 3\left(\frac{\pi}{4}\right)$$

$$\arg(w^n z^3) = -\frac{\pi}{4}$$

$$\Rightarrow n\left(-\frac{\pi}{3}\right) + \frac{3\pi}{4} = -\frac{\pi}{4} + 2k\pi \text{ where } k \in \mathbb{Z}$$

$$-\frac{n\pi}{3} = -\pi + 2k\pi$$

$$n = 3 + 6k \text{ ASU}$$

$$\{n \in \mathbb{Z} : n = 3 - 6k, k \in \mathbb{Z}\} \text{ Paper}$$
i.e. $n \in \{..., -9, -3, 3, 9, ...\}$

$$2^y = 2 + \sin 2x$$

Differentiate w.r.t x:

$$2^{y} \ln 2 \frac{dy}{dx} = 2 \cos 2x \dots (1)$$

$$2^{y} \ln 2 \frac{d^{2} y}{dx^{2}} + 2^{y} (\ln 2)^{2} \left(\frac{dy}{dx}\right)^{2} = -4 \sin 2x \dots (2)$$

When
$$x = 0$$
, $y = 1$, $\frac{dy}{dx} = \frac{1}{\ln 2}$, $\frac{d^2y}{dx^2} = -\frac{1}{\ln 2}$

$$y = 1 + \frac{1}{\ln 2}x - \frac{1}{2\ln 2}x^2 + \dots$$

Alternative method

$$y \ln 2 = \ln(2 + \sin 2x)$$

$$(\ln 2)\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos 2x}{2+\sin 2x}$$

$$(\ln 2)\frac{d^2y}{dx^2} = \frac{-4\sin 2x(2+\sin 2x) - (2\cos 2x)^2}{(2+\sin 2x)^2}$$

When
$$x = 0$$
, $y = 1$, $\frac{dy}{dx} = \frac{1}{\ln 2}$, $\frac{d^2y}{dx^2} = -\frac{1}{\ln 2}$

$$y = 1 + \frac{1}{\ln 2}x - \frac{1}{2\ln 2}x^2 + \dots$$

(b)(i)

$$BC = AC\cos\left(\frac{\pi}{3}\right), DC = AC\sin\left(\frac{\pi}{6} - \theta\right)$$

$$\frac{BC}{DC} = \frac{AC\cos\left(\frac{\pi}{3}\right)}{AC\sin\left(\frac{\pi}{6} - \theta\right)} = \frac{1}{2\left(\sin\frac{\pi}{6}\cos\theta - \cos\frac{\pi}{6}\sin\theta\right)}$$

$$= \frac{1}{2\left(\frac{1}{2}\cos\theta - \frac{\sqrt{3}}{2}\sin\theta\right)}$$

$$= \frac{1}{\cos \theta - \sqrt{3} \sin \theta} \text{ (shown)}$$

Since θ is sufficiently small,

$$\frac{BC}{DC} \approx \frac{1}{1 - \frac{\theta^2}{2} - \sqrt{3}\theta} = \left(1 - \left(\sqrt{3}\theta + \frac{\theta^2}{2}\right)\right)^{-1}$$

$$=1+\sqrt{3}\theta+\frac{\theta^2}{2}+\left(\sqrt{3}\theta+\frac{\theta^2}{2}\right)^2+\dots$$

$$=1+\sqrt{3}\theta+\frac{\theta^2}{2}+3\theta^2+...$$

$$\approx 1 + \sqrt{3}\theta + \frac{7\theta^2}{2}$$

$$\therefore a = \sqrt{3}, b = \frac{7}{2}$$

^	/ \ /°\
y	(a)(i)
,	(u)(1)

Using factor formula (MF26),

 $2\sin x \cos 3x = \sin 4x - \sin 2x$.

Hence

$$\int 2\sin x \cos 3x \, dx = \int (\sin 4x - \sin 2x) \, dx$$
$$= -\frac{\cos 4x}{4} + \frac{\cos 2x}{2} + C$$

(a)(ii)

Let

$$u = x \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 1$$

$$\frac{dv}{dx} = 2\sin x \cos x \Rightarrow v = -\frac{\cos 4x}{4} + \frac{\cos 2x}{2}$$

$$\int 2x\sin x\cos 3x\,\mathrm{d}x$$

$$=x\left(-\frac{\cos 4x}{4} + \frac{\cos 2x}{2}\right) - \int -\frac{\cos 4x}{4} + \frac{\cos 2x}{2} dx$$

$$= -\frac{x\cos 4x}{4} + \frac{x\cos 2x}{2} + \frac{\sin 4x}{16} - \frac{\sin 2x}{4} + C$$

$$= \frac{1}{16} \left[-4x\cos 4x + 8x\cos 2x + \sin 4x - 4\sin 2x \right] + C$$

(b)(i)

To find x-intercepts, $y = \sin \theta \cos 3\theta = 0$

$$\sin \theta = 0$$

or
$$\cos 3\theta = 0$$

$$\theta = 0$$

$$\theta = \frac{\pi}{6}, \frac{\pi}{2}$$

Thus intercepts are when $\theta = 0, \frac{\pi}{6}, \frac{\pi}{2}$.

(b)(ii)
Area of S
$$= \int_{0}^{\left(\frac{\pi}{6}\right)^{2}} y \, dx - \int_{\left(\frac{\pi}{6}\right)^{2}}^{\left(\frac{\pi}{2}\right)^{2}} y \, dx$$

$$= \int_{0}^{\frac{\pi}{6}} \sin \theta \cos 3\theta (2\theta) \, d\theta - \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin \theta \cos 3\theta (2\theta) \, d\theta$$

$$= \int_{0}^{\frac{\pi}{6}} 2\theta \sin \theta \cos 3\theta \, d\theta - \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 2\theta \sin \theta \cos 3\theta \, d\theta$$

$$= \frac{1}{16} \left[-4\theta \cos 4\theta + 8\theta \cos 2\theta + \sin 4\theta - 4\sin 2\theta \right]_{0}^{\frac{\pi}{6}}$$

$$- \frac{1}{16} \left[-4\theta \cos 4\theta + 8\theta \cos 2\theta + \sin 4\theta - 4\sin 2\theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{6}}$$

$$= \frac{1}{16} \left[-4\left(\frac{\pi}{6}\right)\left(-\frac{1}{2}\right) + 8\left(\frac{\pi}{6}\right)\left(\frac{1}{2}\right) + \frac{\sqrt{3}}{2} - 4\left(\frac{\sqrt{3}}{2}\right) \right) - \frac{1}{16}(0)$$

$$- \frac{1}{16}\left(-2\pi + 4\pi(-1)\right) + \frac{1}{16}\left(-4\left(\frac{\pi}{6}\right)\left(-\frac{1}{2}\right) + 8\left(\frac{\pi}{6}\right)\left(\frac{1}{2}\right) + \frac{\sqrt{3}}{2} - 4\left(\frac{\sqrt{3}}{2}\right) \right)$$

$$= 2 \times \frac{1}{16} \left(\frac{\pi}{3} + \frac{2\pi}{3} + \frac{\sqrt{3}}{2} - 2\sqrt{3}\right) - \frac{1}{16} \left[-6\pi\right]$$

$$= \frac{\pi}{2} - \frac{3}{16}\sqrt{3}$$

Since
$$\frac{dT}{dt} > 0$$
 as the object is being heated up, and $T_H - T > 0$ as hotplate temperature is higher than that of the object, it follows that k is positive.

(ii)
$$\frac{dT}{dt} = k (275 - T)$$

$$\int \frac{1}{275 - T} dT = \int k \ dt$$

$$-\ln(275 - T) = kt + C$$

$$275 - T = Ae^{-kt} \text{ where } A = e^{-C}$$
Substituting $t = 0$ $T = 25$ Substituting $t = 100$, $t = 75$, $t = 275 - 250e^{-100k}$ Substituting $t = 100$, $t = 75$, $t = 275 - 250e^{-100k}$ $t = 0.0022314$

Curve *B* is a possible graph. Curve *A* does not fit because:

Temperature does not exceed equilibrium as object is being heated continuously;

OR

The curve cannot have different gradients for same value of T (note that the $\frac{dT}{dt}$ is linear in T);

Gradient cannot be negative at any point because the object is being heated continuously.

OR

Observe that

$$\frac{dT}{dt} = k(T_H - T) - m(T - T_S)$$

$$= (k + m) \left(\frac{kT_H + mT_S}{k + m} - T\right)$$
So $\frac{dT}{dt}$ is always > 0 .

As
$$T \to 125$$
, $\frac{dT}{dt} \to k(275 - 125) - m(125 - 25)$.

From graph,

as
$$T \rightarrow 125$$
, $\frac{dT}{dt} \rightarrow 0$.

So,
$$0 = k(275-125) - m(125-25)$$

$$\Rightarrow m = \frac{3k}{2} \approx 0.00335 \text{ (3s.f.)}$$

11

$$\overrightarrow{PQ} = \begin{pmatrix} 9 \\ 8 \\ 3 \end{pmatrix} - \begin{pmatrix} 9 \\ 2 \\ 9 \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \\ -6 \end{pmatrix}, \ \overrightarrow{PR} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 9 \\ 2 \\ 9 \end{pmatrix} = \begin{pmatrix} -6 \\ 0 \\ -6 \end{pmatrix}$$

A vector normal to Π_1 is $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \times \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$

$$\mathbf{r.} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 2$$

So a Cartesian equation of
$$\Pi_1$$
 is $-x + y + z = 2$

(ii)

Position vector of midpoint of \overrightarrow{PQ} is

$$\frac{1}{2}(\overrightarrow{OP} + \overrightarrow{OQ}) = \begin{pmatrix} 0 & \text{Individe Delivery | Whatsapp Only 88660031} \\ 5 & 6 \end{pmatrix}$$

 Π_2 is perpendicular to \overrightarrow{PQ} , so \overrightarrow{PQ} is normal to Π_2

So $\mathbf{r} \cdot \begin{pmatrix} 0 \\ 6 \\ -6 \end{pmatrix} = \begin{pmatrix} 9 \\ 5 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 6 \\ -6 \end{pmatrix} = -6$
So a Cartesian equation of Π_2 is $6y - 6z = -6 \Rightarrow y - z = -1$.
(iii) Eqn of line passing through S and F is $ \mathbf{r} = \begin{pmatrix} 3 \\ 8 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R} $ So $\overrightarrow{OF} = \begin{pmatrix} 3 - \lambda \\ 8 + \lambda \\ 9 + \lambda \end{pmatrix}$ for some λ $F \text{ lies on } \Pi_1$ So $\overrightarrow{OF} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 - \lambda \\ 8 + \lambda \\ 9 + \lambda \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 2$
$\Rightarrow \lambda = -4$
So coordinates of F are $(7,4,5)$.
(iv) Note that T lies on the line SF , So $\overrightarrow{OT} = \begin{pmatrix} 3 - \lambda \\ 8 + \lambda \\ 9 + \lambda \end{pmatrix}$ for some λ from (iii)
$\overrightarrow{PT} = \begin{pmatrix} 3 - \lambda \\ 8 + \lambda \\ 9 + \lambda \end{pmatrix} - \begin{pmatrix} 9 \\ 2 \\ 9 \end{pmatrix} = \begin{pmatrix} -6 - \lambda \\ 6 + \lambda \\ \lambda \end{pmatrix} \text{ and }$ $\overrightarrow{ST} = \begin{pmatrix} 3 - \lambda \\ 8 + \lambda \\ 9 + \lambda \end{pmatrix} - \begin{pmatrix} 3 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} -\lambda \\ \lambda \\ \lambda \end{pmatrix}$
Since $ \overrightarrow{PT} = \overrightarrow{ST} $, $(6+\lambda)^2 + (6+\lambda)^2 + \lambda^2 = (-\lambda)^2 + \lambda^2 + \lambda^2$ $\Rightarrow (6+\lambda)^2 = \lambda^2$
$\Rightarrow (6+\lambda)^2 - \lambda^2 = 0$

 $\Rightarrow (6 + \lambda + \lambda)(6 + \lambda - \lambda) = 0$ $\Rightarrow \lambda = -3$ Hence coordinates of $T_e(6, 5, 6)$ hat sapp Only 88660031

EJC_H2_2019_JC2_Prelim_P2_Solutions

Section A: Pure Mathematics [40 marks]

1 (a) Sub
$$z = (2+2i)w$$
 into the other equation
$$\Rightarrow (1-2i)(2+2i)w = 39 - 11wi$$

$$\Rightarrow w = \frac{39}{(1-2i)(2+2i)+11i} = 2-3i \text{ (using GC)}$$
Thus, $z = (2+2i)(2-3i) = 10-2i$

$$\Rightarrow z = \frac{39}{\frac{11i}{2+2i} + (1-2i)} = 10-2i \text{ (using GC)}$$
Thus, $w = \frac{10-2i}{2+2i} = 2-3i$.

(b)

$$(1+ic)^3 = 1+3ic+3(ic)^2+(ic)^3$$

 $=1+3ic-3c^2-ic^3$
 $=1-3c^2+i(3c-c^3)$
Since $(1+ic)^3$ is real,
 $3c-c^3=0$
 $c(3-c^2)=0$
 $c=0,\pm\sqrt{3}$

2 (i)

Max x = 3r when $\theta = 0$

Min x = r when $\theta = \pi$

(ii)

Method 1

Consider triangle OPA.

$$\cos \theta = \frac{OA}{r} \Rightarrow OA = r \cos \theta$$

Consider triangle PAQ. By pythagoras theorem,

$$AQ = \sqrt{(2r)^2 - (PA)^2}$$
$$= \sqrt{(2r)^2 - (r\sin\theta)^2}$$
$$= r\sqrt{4 - \sin^2\theta}$$

$$x = OA + AQ = r\cos\theta + r\sqrt{4 - \sin^2\theta} = r\left[\cos\theta + \sqrt{4 - \sin^2\theta}\right] \text{ (shown)}$$

Method 2: Cosine Rule

$$(2r)^2 = r^2 + x^2 - 2rx\cos\theta$$
$$4r^2 = r^2 + x^2 - 2rx\cos\theta$$

$$= (x - r\cos\theta)^2 + r^2\sin^2\theta$$

$$x - r\cos\theta = r\sqrt{4 - \sin^2\theta}$$
 (reject $-r\sqrt{4 - \sin^2\theta}$: $x \ge r \ge r\cos\theta$)

$$x = r\left(\cos\theta + \sqrt{4 - \sin^2\theta}\right) \quad \text{(shown)}$$

(iii)

Method 1:

$$\frac{dx}{dt} = \frac{dx}{d\theta} \times \frac{d\theta}{dt}$$

$$= r \left[-\sin\theta + \frac{(-2\sin\theta\cos\theta)}{2\sqrt{4 - \sin^2\theta}} \right] \times \frac{d\theta}{dt}$$
When $\theta = \frac{\pi}{6}$ and $\frac{d\theta}{dt} = 0.3$, aper

When
$$\theta = \frac{\pi}{6}$$
 and $\theta = 0.3$, aper Signature of the state of the

$$\frac{\mathrm{d}x}{\mathrm{d}t} = r \left[-\sin\frac{\pi}{6} - \frac{\sin\frac{\pi}{6}\cos\frac{\pi}{6}}{\sqrt{4 - \sin^2\left(\frac{\pi}{6}\right)}} \right] (0.3)$$
$$= -0.217r$$

Method 2:

Differentiate implicitly w.r.t t,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = r \left(\sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{\left(-2\sin\theta\cos\theta \right)}{2\sqrt{4 - \sin^2\theta}} \frac{\mathrm{d}\theta}{\mathrm{d}t} \right)$$

When
$$\theta = \frac{\pi}{6}$$
 and $\frac{d\theta}{dt} = 0.3$,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = r \left[-\left(\sin\frac{\pi}{6}\right)(0.3) - \frac{\sin\frac{\pi}{6}\cos\frac{\pi}{6}}{\sqrt{4 - \sin^2\left(\frac{\pi}{6}\right)}}(0.3) \right]$$
$$= -0.217r$$

3 (i)

Length of projection of q onto $p = |\mathbf{q} \cdot \hat{\mathbf{p}}| = \left| \frac{\mathbf{q} \cdot \mathbf{p}}{|\mathbf{p}|} \right|$

Method 1

$$3\overrightarrow{PR} = 5\overrightarrow{PQ} \Rightarrow 3(\mathbf{r} - \mathbf{p}) = 5(\mathbf{q} - \mathbf{p}) \Rightarrow \mathbf{q} = \frac{1}{5}(2\mathbf{p} + 3\mathbf{r})$$

Sub into $|\mathbf{q} \cdot \hat{\mathbf{p}}|$:

$$|\mathbf{q} \cdot \hat{\mathbf{p}}| = \left| \frac{\frac{1}{5} (2\mathbf{p} + 3\mathbf{r}) \cdot \mathbf{p}}{|\mathbf{p}|} \right|$$

$$= \left| \frac{\frac{2}{5} \mathbf{p} \cdot \mathbf{p} + \frac{3}{5} \mathbf{p} \cdot \mathbf{r}}{|\mathbf{p}|} \right|$$

$$= \frac{\frac{2}{5} (29) + \frac{3}{5} (11)}{\sqrt{29}} = \frac{91}{5\sqrt{29}} \text{ (or 3.38)}$$

Method 2

$$3\overrightarrow{PR} = 5\overrightarrow{PQ} \Rightarrow 3(\mathbf{r} - \mathbf{p}) = 5(\mathbf{q} - \mathbf{p}) \Rightarrow \mathbf{r} = \frac{1}{3}(5\mathbf{q} - 2\mathbf{p})$$

Sub into $\mathbf{p.r} = 11$:

$$\Rightarrow \frac{1}{3}(5\mathbf{q} - 2\mathbf{p}) \cdot \mathbf{p} = 11$$

$$\Rightarrow 5\mathbf{q} \cdot \mathbf{p} - 2\mathbf{p} \cdot \mathbf{p} = \frac{33}{5} |\mathbf{A} \cdot \mathbf{p}| = \frac{91}{5} \Rightarrow |\mathbf{q} \cdot \hat{\mathbf{p}}| = \frac{91}{5\sqrt{29}} (\text{or } 3.38) \text{ inly 88660031}$$

Method 3

Dot p to both sides,

$$3(r-p).p = 5(q-p).p$$

$\Rightarrow 3(\mathbf{r}-\mathbf{p}).\mathbf{p} = 5(\mathbf{q}-\mathbf{p}).\mathbf{p}$
$\Rightarrow 3\mathbf{r.p} - 3\mathbf{p.p} = 5\mathbf{q.p} - 5\mathbf{p.p}$
\Rightarrow p.q = $\frac{1}{5}$ (3 p.r + 2 p.p) = $\frac{1}{5}$ (3(11) + 2($\sqrt{29}$) ²) = $\frac{91}{5}$
So $ \mathbf{q}.\hat{\mathbf{p}} = \frac{91}{5\sqrt{29}}$ (or 3.38)

(ii)

 $\overline{PS} = \mathbf{r}$ so OPSR is a parallelogram spanned by OP and OR.

So area of $OPSR = |\mathbf{p} \times \mathbf{r}|$

$$= \begin{vmatrix} 3 \\ 2 \\ -4 \end{vmatrix} \times \begin{pmatrix} 1 \\ -2 \\ -3 \end{vmatrix} = \begin{vmatrix} -6-8 \\ -(-9+4) \\ -6-2 \end{vmatrix} = \begin{vmatrix} -14 \\ 5 \\ -8 \end{vmatrix} = \sqrt{285}$$

(iii)

Method 1

No, because the horizontal line y = 1 (for example) cuts the graph more than once from (0,1]. So f is not 1-1 so f^{-1} does not exist.

Method 2

No, because for example, f(1.1) = f(1.2) = 0. So f is not 1-1 so f^{-1} does not exist.

(iv)

$$R_{\rm f} = \left\{-1, 0, 1\right\}$$

(v)

$$g^{2}(x) = \frac{a\left(\frac{ax-3}{x-a}\right) - 3}{\frac{ax-3}{x-a} - a}$$
$$= \frac{a^{2}x - 3a - 3x + 3a}{ax - 3 - ax + a^{2}}$$
$$= x$$

Then

$$g^{3}(x) = g^{2}(g(x))$$
$$= \frac{ax-3}{x-a}$$

Observe that even compositions give x, odd compositions give g(x).

So
$$g^{2019}(x) = \frac{ax-3}{x-a} \Rightarrow g^{2019}(5) = \frac{5a-3}{5-a}$$
.

$$g(x) = \frac{3x - 3}{x - 3}$$

$$D_{\rm f} = (-2,2] \xrightarrow{\rm f} \{-1,0,1\} \xrightarrow{\rm g} \left\{\frac{3}{2},1,0\right\}$$

5 (a)(i)

$$u_1 = \frac{4}{M^2}, u_2 = \frac{4}{M^5}, u_3 = \frac{4}{M^8}$$

(a) (ii)

$$\sum_{r=1}^{n} \frac{4}{M^{3r-1}} = \frac{\frac{4}{M^{2}} \left(1 - \frac{1}{M^{3n}} \right)}{1 - \frac{1}{M^{3}}}$$

$$= \frac{4}{M^{2}} \left(1 - \frac{1}{M^{3n}} \right) \times \frac{M^{3}}{M^{3} - 1}$$

$$= \frac{4M}{M^{3} - 1} \left(1 - \frac{1}{M^{3n}} \right) \text{ (shown)}$$

(a) (iii)

Method 1 (consider expression)

Since as
$$n \to \infty$$
, $M^{3n} \to 0$, $M^{3} \to 0$, $M^{3} \to 0$, $M^{3} \to 0$.

ExamPaper

Islandwide 4 Mery | Whatsapp Only 88660031

The sum to infinity is $M^{3} \to 0$.

Method 2 (consider GP)

This is a GP with common ratio = $\frac{1}{M^3}$

$$M > 1 \Rightarrow 0 < \frac{1}{M} < 1 \Rightarrow 0 < \frac{1}{M^3} < 1, \text{ so the series is convergent.}$$

$$S = \frac{\frac{4}{M^2}}{1 - \frac{1}{M^3}} = \frac{4M}{M^3 - 1}$$

$$(b)(i)$$

$$\cos\left(\frac{2r + 1}{2}\right) - \cos\left(\frac{2r - 1}{2}\right)$$

$$= -2\sin\left(\frac{1}{2}\left(\frac{2r + 1}{2} + \frac{2r - 1}{2}\right)\right)\sin\left(\frac{1}{2}\left(\frac{2r + 1}{2} - \frac{2r - 1}{2}\right)\right)$$

$$= -2\sin(r)\sin\left(\frac{1}{2}\right) \quad \text{(shown)}$$

$$(b)(ii)$$

$$\sum_{r=1}^{n} \sin r = -\frac{1}{2\sin\left(\frac{1}{2}\right)} \sum_{r=1}^{n} \left(\cos\left(\frac{2r + 1}{2}\right) - \cos\left(\frac{2r - 1}{2}\right)\right)$$

$$= -\frac{1}{2\sin\left(\frac{1}{2}\right)} + \cos\left(\frac{3}{2}\right) - \cos\left(\frac{3}{2}\right)$$

$$+ \cos\left(\frac{7}{2}\right) - \cos\left(\frac{3}{2}\right)$$

$$+ \cos\left(\frac{2n - 1}{2}\right) - \cos\left(\frac{2n - 3}{2}\right)$$

$$+ \cos\left(\frac{2n + 1}{2}\right) - \cos\left(\frac{2n - 3}{2}\right)$$

$$+ \cos\left(\frac{2n + 1}{2}\right) - \cos\left(\frac{2n - 1}{2}\right)$$

$$= -\frac{1}{2} \csc\left(\frac{1}{2}\right) \left[\cos\left(n + \frac{1}{2}\right) - \cos\left(\frac{1}{2}\right)\right]$$

$$= -\cos \left(\frac{1}{2}\right) \sin\frac{n + 1}{2} \sin\frac{n}{2} \quad \text{shown}$$

Section B: Probability and Statistics [60 marks]

6 (i)
$$d = 0.5 - c$$
(ii) Let X be the result of one throw of the die. $E(X) = (1)(0.3) + (2)(c) + (3)(0.5 - c) + (4)(0.2) = 2.6 - c$
 $E(X^2) = (1)(0.3) + (4)(c) + (9)(0.5 - c) + (16)(0.2) = 8 - 5c$
 $Var(X) = E(X^2) - [E(X)]^2$
 $= (8 - 5c) - (2.6 - c)^2$
 $= 8 - 5c - c^2 + 5.2c - 6.76$
 $= -c^2 + 0.2c + 1.24$
 $= -(c - 0.1)^2 + 1.25$ (completing the square)

Thus, the variance is maximum when $c = 0.1$
(iii)
Let Y be the number of throws, out of 10 , that land on an even number. $Y \sim B(10, 0.4)$

Required probability
 $= P(Y \ge 7)$
 $= 1 - P(Y \le 6)$
 $= 0.054762...$
 $= 0.0548$ (to 3 s.f.)

7 (i)
$$X_2 \sim N(\mu, 4)$$

$$P(\mu-1 < X_2 < \mu+1)$$

$$= P\left(\frac{\mu-1-\mu}{2} < \frac{X_2-\mu}{2} < \frac{\mu+1-\mu}{2}\right)$$

$$= P\left(-\frac{1}{2} < Z < \frac{1}{2}\right) \text{ where } Z \sim N(0, 1)$$

$$= 0.38292...$$

$$\approx 0.383 \quad (3 \text{ s.f.})$$
(ii)
$$X_3 - X_4 \sim N(0, 14)$$

$$P(X_3 \ge X_4) = P(X_3 - X_2 \ge 0) = \frac{1}{2} \text{ by symmetry}$$
(iii)
$$Var(Y_n) = \frac{1}{n^2} Var(X_1 + X_2 + ... + X_n)$$

$$= \frac{1}{n^2} (Var(X_1) + Var(X_2) + ... + Var(X_n))$$

$$= \frac{1}{n^2} (2 + 4 + 6 + ... + 2n)$$

$$= \frac{1}{n^2} \times n(n+1) \quad \text{(Sum of A.P.)}$$
$$= 1 + \frac{1}{n}$$

Since the X_n 's are independent Normal distributions with common mean,

$$Y_n \sim N\left(\mu, 1 + \frac{1}{n}\right)$$

(NB: The variance of Y_n decreases as n increases.)

Either

$$P(\mu-1 < Y_n < \mu+1) > \frac{2}{3}$$

$$P\left(\frac{\mu - 1 - \mu}{\sqrt{1 + \frac{1}{n}}} < \frac{Y_n - \mu}{\sqrt{1 + \frac{1}{n}}} < \frac{\mu + 1 - \mu}{\sqrt{1 + \frac{1}{n}}}\right) > \frac{2}{3}$$

$$P\left(\frac{-1}{\sqrt{1+\frac{1}{n}}} < Z < \frac{1}{\sqrt{1+\frac{1}{n}}}\right) > \frac{2}{3}$$

$$\frac{1}{\sqrt{1+\frac{1}{n}}} > 0.96742$$

Solving this inequality, n > 14.6017...

Hence, the smallest possible value of n is 15.

Alternatively

$$Y_n - \mu \sim N\left(0, 1 + \frac{1}{n}\right)$$

From GC,

n	$P(-1 < Y_n - \mu < 1)$
14	0.6660
15	0.6671

 \therefore smallest value of n is 15.

8 (i)
$$P(B) = P(A \cup B) - P(A \cap B') = \frac{6}{7} - \frac{1}{3} = \frac{11}{21}$$
(ii)
$$P(A'|B) = \frac{P(A' \cap B)}{P(B)} = \frac{P(A \cup B) - P(A)}{P(B)} = \frac{\frac{6}{7} - \frac{2}{5}}{\frac{11}{21}} = \frac{\frac{16}{35}}{\frac{11}{21}} = \frac{48}{55}$$
(iii)
$$P(B' \cap C) = P(C) - P(B) - C$$

$$= \frac{2}{5} - P(B) P(C)$$
(:* B, C independent)
$$= \frac{2}{5} - \frac{11}{21} \times \frac{2}{5}$$

$$= \frac{4}{21}$$

Let
$$P(A \cap B' \cap C) = x$$

Since
$$\frac{4}{21} - x \ge 0$$
, $x \le \frac{4}{21}$

Furthermore, since
$$P(A \cup B) = \frac{6}{7}$$
, $\frac{4}{21} - x \le \frac{1}{7}$, so $x \ge \frac{1}{21}$

Alternative:

$$\overline{A \cap B' \cap C} \subseteq B' \cap C \Rightarrow P(A \cap B' \cap C) \leq P(B' \cap C)$$

So greatest possible value is $\frac{4}{21}$.

Furthermore, $P(A \cap B' \cap C) = P(B' \cap C) - P(A' \cap B' \cap C)$

And
$$P(A' \cap B' \cap C) \leq P(A' \cap B') = 1 - P(A \cup B) = \frac{1}{7}$$

So
$$P(A \cap B' \cap C) \ge P(B' \cap C) - \frac{1}{7} = \frac{1}{21}$$

So least possible value is $\frac{1}{21}$.

(a)(i)

9 letters with 3 'E' and 2 'L'

No. of ways
$$=\frac{9!}{3!2!}=30240$$

(a)(ii)

L is fixed

$$_{\rm J}_{\rm W}_{\rm L}_{\rm R}_{\rm Y}$$
: 5!=120

Case 1: separated by 2 and 2

-2 ways

Case 2: separated by 2 and 3/3 and 2-2 ways

Total number of ways: $120 \times (2+2) = 480$ ways

(a)(iii)

All distinct: ${}^{6}C_{4} \times 4! = 360$ EE or LL (but not both): ${}^{2}C_{1} \times {}^{5}C_{2} \times \frac{4!}{2!}$ Islandwide Delivery | Whatsapp 2! | 81

EE and LL: $\frac{4!}{2!2!} = 6$

EEE:
$${}^{5}C_{1} \times \frac{4!}{3!} = 20$$

Total: 360 + 240 + 6 + 20 = 626

(b)

Mr and Mrs Lee together: $(9-1)! \times 2! = 80640$

Mr and Mrs Lee together and 3 children together: $(7-1)! \times 2! \times 3! = 8640$

Number of ways: 80640 - 8640 = 72000

OR

Let A be the event that Mr and Mrs Lee are seated together and B be the event that the 3 children are all seated together.

Then no. of ways = $n(A) - n(A \cap B)$

$$=(9-1)! \times 2! - (7-1)! \times 2! \times 3!$$

=80640-8640=72000

10 (i)

$$\overline{x} = 1050 + \frac{58.0}{50} = 1051.16$$

$$s^{2} = \frac{1}{n-1} \left[\sum (x-1050)^{2} - \frac{\left[\sum (x-1050)\right]^{2}}{n} \right]$$

$$=\frac{1}{49} \left(2326 - \frac{58.0^2}{50}\right)$$

$$=46.096$$
 (5 s.f.)

To test

 H_0 : $\mu = 1053$ against

H₁: $\mu \neq 1053$ at 5% level of significance

Since n = 50 is large, by Central Limit Theorem,

under H_0 , $\bar{X} \sim N\left(1053, \frac{46.096}{50}\right)$ approximately

either

p-value: 0.055322

or

z-value: -1.9163 and critical region: $|z_{0.025}| = 1.96$

Since p-value > 0.05 (or z-value < 1.96), we do not reject H ₀ and conclude at 5% level of significance that
there is insufficient evidence that the population mean amount of sodium per packet has changed after
alterations to the workflow.
(ii)
The probability of wrongly concluding that the mean amount of sodium is not 1053mg, when it is in fact
1053mg, is 0.05.
(iii)
Since <i>p</i> -value is 0.055322 , $\alpha \ge 6$
(iv)
If we tested H_1 : $\mu < 1053$,
Either
p-value = $0.027661 < 0.05$
or
z-value = $-1.9163 < -1.645$
So we may reject H ₀ and conclude at 5% level of significance that the population mean amount of sodium had
decreased.
(v)
To test H_0 : $\mu = 1053$ against
$H_{\odot} = 4.053$ at 5% level of significance

H₁: μ < 1053 at 5% level of significance

Since n = 50 is large, by Central Limit Theorem,

under H₀,
$$\bar{X} \sim N\left(1053, \frac{6.0^2}{40}\right)$$
 approximately

To reject H_0 , p-value < 0.05

 $\Rightarrow \overline{y} < 1051.4$ (to 1 d.p.)

It is not necessary to assume anything about the population distribution, as sample size (= 40) is large enough, so the Central Limit Theorem says the sample mean amount of sodium approximately follows a normal distribution.

11	(a)	
	There may be a strong negative linear correlation between the amount of red wine intake and the risk of heart	
	disease, but we cannot conclude that amount of red wine intake causes risk of heart disease to decrease, as	
	causality cannot be inferred from correlation.	
	(b)(i)	
	The variable t is the independent variable, as we are able to control, or determine, the intervals at which we	
	measure the corresponding radiation.	
	(b)(ii)	
	I \ (0.2,2.81)	
	x	
	•	
	X	
	<u> </u>	
	y (1, d3)	
	—	
	t	
	From the scatter diagram, we can see that the points lie along a curve, rather than a straight line. Hence	
	I = at + b is not a likely model.	
	(b)(iii)	
	r between I and $t = -0.9565$	
	r between $\ln I$ and $t = -0.9998$	
	(b)(iv)	
	$I = ae^{bt} \Rightarrow \ln I = bt + \ln a$	
	Equation of regression line:	
	$\ln I = -2.7834239t + 1.6007544 \Rightarrow \ln I = -2.78t + 1.60$	
	$\ln a = 1.600754 \Rightarrow a = 4.96 \text{ (3 s.f.)}$	
	b = -2.78 (3 s.f.)	
	(b)(v)	
	t = 0.7, $I = 0.706$ (to 3 sig fig)	
	The answer is reliable as r is close to -1, and $t = 0.7$ is within the data range (0.2 to 1.0) and thus the estimate	
	is obtained via interpolation.	

End of Paper

